
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

Conservation of disclination strength in two-dimensional lattice models of
liquid crystalline textures
Tsunehisa Kimuraa

a Department of Chemistry, Pulp and Paper Research Centre, McGill University, Montreal, QC,
Canada

To cite this Article Kimura, Tsunehisa(1994) 'Conservation of disclination strength in two-dimensional lattice models of
liquid crystalline textures', Liquid Crystals, 16: 3, 461 — 467
To link to this Article: DOI: 10.1080/02678299408029171
URL: http://dx.doi.org/10.1080/02678299408029171

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/02678299408029171
http://www.informaworld.com/terms-and-conditions-of-access.pdf


LIQUID CRYSTALS, 1994, VOL. 16, No. 3, 461467 

Conservation of disclination strength in two-dimensional lattice models 
of liquid crystalline textures 

by TSUNEHISA KIMURA 
Department of Chemistry, Pulp and Paper Research Centre, McGill University, 

3420 University Street, Montreal, QC, Canada H3A 2A7 

(Received 30 April 1993; accepted I0 September 1993) 

The disclination strength defined on the boundary of textures generated by 
recently proposed simple modelling methods appears to be the sum of the 
strengths of primitive disclinations inside the boundary. In this paper, a rationali- 
zation is provided for these observations in two dimensions using an analytical 
expression for the conservation law for wedge type disclinations. 

1. Introduction 
In liquid crystal systems, a variety of fascinating texture patterns are observed 

when viewed under crossed polars [l]. The observed texture depends on boundary 
conditions, container shape, the dimension of the system, external fields, and 
mesophase type [l-31. The textures are often attributed to disclinations, that is, 
singular points, lines, or walls in a director field [3]. Interactions and types of 
disclinations have been studied in terms of their topology and energy [2-41. 
Experimentally, the fusion of two disclinatioris is often observed, resulting in their 
annihilation or the creation of a new disclination, with the total disclination strength 
conserved [5 ] .  Theoretically, the conservation law of disclination strength has been 
proven for some cases [3,6,7]. For a system with wedge type disclinations, the 
conservation law might be expected to hold since all disclination lines are regarded 
as parallel to each other [3]. 

In the previous study of the texture patterns generated by a lattice model [8], we 
obtained wedge type disclination patterns for fixed boundary conditions which 
encourage a disclination in the centre of the system. In the patterns where larger 
disclination strengths were imposed on the boundary, several primitive disclinations 
of 1/2 strength were observed instead of a single disclination, and the sum of the 
strengths of these primitive disclinations appeared to be equal to the disclination 
strength characterizing the boundary. A similar observation seems to hold for the 
patterns obtained by Bedford et al. [9]. In this paper, it is shown that the disclination 
strength is conserved for the two-dimensional system which satisfies the Frank 
equation [lo] for a fixed boundary condition. Also, it is shown that the conservation 
holds for more general cases. 

2. Conservation law of dischation strength 
We consider a two-dimensional director field n in the xy-plane. The orientation 

of a director at (x, y )  is specified by an angle $(x,y) relative to the x axis, which 
satisfies 

a24 a24 
- + y = O ,  
ax2 ay 

0267-8292194 $10.00 0 1994 Taylor & Francis Ltd. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
5
1
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



462 T. Kimura 

derivable from the continuum theory [lo]. The solution, which can include a 
disclination, is given [lo] as 

(2) 
Y 4 = Sq + (po with q = arctan -, 
X 

where S is the disclination strength and 4o is a constant. The solution for the system 
on which the boundary condition 4, is imposed may be expressed by the linear 
combination of the primitive solutions of equation (2): 

where ( x i ,  y i )  indicates the location of the primitive disclinations with the strength Si.  
&(x,y) is a function which does not comprise singularities inside the boundary and 
satisfies V2(po=0. The problem is to determine the values of (xi,yi), S i ,  do, and m, 
the number of primitive disclinations, so as to satisfy the condition that 4 = 4, on 
the boundary. Apart from the problem of determining these parameters, it is shown 
that the sum of the strengths of primitive disclinations is equal to the disclination 
strength S ,  characterizing the boundary condition . Taking the gradient of 4 in 
equation ( 3 )  and integrating it along the boundary y ,  we obtain 

m 1  
= 1 Si2,f 

i = l  Y 

m 

= 2 s i ,  
i =  1 

(4) 

where the direction of the contour integral is taken positive, that is, the integration 
is performed along y,  looking at the system on the left side. The second term in 
the second line of equation (4) vanishes because $jo does not include singularities 
inside y .  

There are a number of possible ways to determine the set of parameters, (xi,yi), 
Si, (po, and m. These include the modelling methods proposed by Bedford et al. [9], 
and by us [8], which are equivalent to solving equation (1) numerically for a fixed 
boundary condition [8]. The modelling shows that multiple solutions are possible for 
a given boundary condition, each representing a configuration at one of the local 
energy minima. This implies that various sets of parameters might be allowed for a 
given boundary condition (p,, but Si satisfies the conservation condition expressed 
by equation (4). 

The above discussion assumes that 4 satisfies equation (l), that is, the system is 
in a local energy minimum. As is shown below, the conservation holds even for 
systems which deviate from a local minimum. This applies to the case where the 
simulation of Bedford et al. [9] is terminated before the system reaches an energy 
minimum, or to the case of Monte Carlo simulations where configurations with 
higher energy are allowed. 

Let us consider a director field 4(x,y), which this time does not necessarily 
satisfy equation (l), defined in the region R encircled by the boundary y. On y is 
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Conservation of disclination strength 463 

imposed a boundary condition which is characterized by the disclination strength S ,  
defined, in a way similar to equation (4), by 

where the direction of y is taken positive. Let us suppose that R contains some 
disclination points, for example, P, and P, as shown in figure 1. Enclosing P, and P, 
by circuits y ,  and y,, we define a region R, surrounded by the circuit y, starting from 
A going through BCylDEFGy2HI and returning to A .  The disclination strength of 
the circuit y, is then expressed by 

1 s =- 
yq 2n i,,) Vd a ds 

(6) 

Due to the cancellation of integrals on BC and D E  and those on FG and I H ,  SYq is 
simplified as 

On the other hand, using the two-dimensional Gauss theorem, the contour integral 
on y, in equation (6) is transformed to the surface integral over R,, which vanishes 
because Vq5 is regular in R, . Consequently, Syq = 0, and equation (7) becomes 

which reads 

s, = s,, + s,, . 
The above consideration is readily extended to the case of n disclination points 

n 

s,= 1 SYi. 
i =  1 

(9) 

Figure 1. Two-dimensional region R enclosed by y where two primitive disclinations P, and 
P, are assumed. 
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464 T. Kimura 

The sign of the disclination strength S Y i  coincides with that of the conventional 
disclination strength as long as the direction of y i  is taken positive. Note that the 
only condition in deriving equation (10) is that 4 is continuous everywhere except at 
disclination points. 

3. Conservation of disclination strength in lattice models 
Here, we show some examples of the conservation of disclination strength 

observed in two-dimensional lattice models. First, we consider the solution of the 
continuum theory, equation (2), in discrete form. Second, patterns generated by a 
matrix method [8] are reviewed. Finally, the patterns obtained by recent simulation 
methods [9,11] under various conditions are analysed. In every case, the strength 
and location of a primitive disclination is detected by calculating the strength along 
a circuit connecting four lattice sites which form a square. 

3.1. Continuum theory solutions 
In figure 2 are displayed the solution of the continuum theory, equation (2), for 

S = 312 and - 2 in a discrete form. Primitive disclinations of strength & 1 /2 are found 
around the core region of the system. But these are not true disclinations because 
equation (2) should have only one disclination with strength of S (= 3 /2  or - 2 in 
this case) located at the centre of the system. These primitive disclinations are 

MATRIX METHOD 

Figure 2. Texture patterns [8] obtained by the continuum theory (right) and by the matrix 
method (left) with fixed boundary conditions of S = 3 / 2  (top) and S= -2 (bottom). 
Circles and squares indicate primitive disclinations of strength of - l /2 and 1/2, 
respectively. 
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Conservation of disclination strength 465 

attributed to an artifact due to insufficiently discrete sampling of the continuum 
field, and they will remain even with a finer division; the finer the division, the closer 
these primitive disclinations approach to the centre of the core. In the infinitely fine 
limit, these primitive disclination points collapse exactly to a single disclination point 
with strength S .  Hence, a disclination with larger S might be regarded as being 
composed of some primitive disclinations. 

The disclination strengths along the boundaries are evidently 3/2 and -2, 
respectively. The sum of the strengths of the apparent primitive disclinations 
coincides with the S value of the boundary. This observation holds for other S values 
up to &7/2 in the present study, except S =  1 and 3 where the strength of some 
primitive disclinations is undetermined because I V4 1 = 7c/2 for adjacent lattice sites. 

(4 
Figure 3. Texture patterns with fixed boundary condition of S=3/2, simulated by the 

quenching method (a) and by the annealing method (b). The periodic boundary 
condition was used for (c), where the disclination strength of the boundary is found to 
be S =  1/2. Circles and squares indicate primitive disclinations of strength of - 1/2 and 
1/2, respectively. 
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466 T. Kimura 

Figure 4. Texture patterns simulated by the quenching method with S=3/2 (as in figure 
3 (a)), but with iteration truncated before the energy minimization is completed. Circles 
and squares indicate primitive disclinations of strength of - 1/2 and 1/2, respectively. 

Even for these cases, the conservation law is satisfied by taking a circuit large 
enough to avoid discrete sampling errors. 

3.2. Matrix method solutions 
In figure 2 are reproduced the patterns obtained by the matrix method [8] for 

S=3/2 and -2 for the comparison with those by :he continuum theory. The 
conservation law is evidently satisfied: 312 = 4 x ( 1  12) - 1/2, and - 2 = 4 x (- 1/2). 
For the other values of S in the previous study [8], the conservation law is also 
satisfied: for S = - 3/2 and 2, we have - 312 = 4 x (- 1/2) + l/2 and 2 = 4 x (1/2), and 
for S =  -f 1 with shifted centre, we have - 1 = 2  x (- 1/2) and 1 = 2  x (1/2). Compar- 
ing the patterns between the two methods, we find that the topology of the primitive 
disclinations apparent in the core for the continuum theory seems to remain in the 
patterns of the matrix method, with the total energy decreased by decentralizing the 
apparent primitive disclinations. The same tendency is observed for other values of 
S .  It should be noted that the solution by the matrix method corresponds to 
equation (3) where multiple disclination points are allowed to be located in an 
arbitrary way as long as the conservation is satisfied and Cpo is determined. 

3.3. Pattern obtained by simulation 
The simulation used to obtain the texture patterns shown in figure 3 is based on 

an iterative method of selecting a lattice site and minimizing the orientational energy 
of the site with respect to its four neighbours until the total energy becomes a 
minimum [9,11]. The patterns shown here thus satisfy equation (1). Two types of 
boundary conditions are possible: fixed and periodic boundary conditions. In the 
case of fixed boundary conditions, two ways to select a lattice site are possible: 
random selection (quenching method) and selection from the boundary (annealing 
method [ll]) In figure 3(a) is shown a texture pattern obtained by the quenching 
method with the fixed boundary condition of S = 312. We see that the Conservation 
law is satisfied: 3/2= 17 x (- 1/2)+20 x (1/2). In figure 3 (b), a result for the 
annealing method for the same boundary condition is shown, where we see 
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Conservation of disclination strength 467 

3/2 = 4 x (- 1/2) + 7 x (1/2). In figure 3 (c )  a texture pattern for the periodic bound- 
ary condition is shown. (In the periodic boundary condition, directors on the 
boundary of the lattice are not fixed but are subjected to minimization with respect 
to their four neighbours: at a lattice site ( n , j ) ,  for example, on the boundary of the 
right edge of the system, one of these neighbours, i.e., (n + 1 , j ) ,  is located outside the 
system. In the periodic boundary condition, this site is assumed to be identical with 
(1, j ) ,  i.e. one on the left edge of the system. The same thing applies to the other 
edges.) In the figure, we see that the disclination strength around the boundary is 1/2 
which is equal to the sum of the primitive disclinations, i.e. 17 x (- 1/2) + 18 x (1/2). 

Figure 4 shows a texture for the quenching method with S = 3/2 as the fixed 
boundary condition, but here the iteration is truncated before the energy minimiza- 
tion is completed, so that equation (1) is not satisfied. As proven in § 2, even under 
this condition, the conservation of the disclination strength is expected. Thus, we see 
that 3/2=31 x (- l/2)+34 x (1/2). 

I thank Professor D. G. Gray for encouragement and support. 
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